as a production platform

Basic familiarity with Heroku is assumed.

Howdy!

I'm Marten Gustafson

+ My speaker bio says | work at Plan 3, but we’re actually a part of Schibsted
* (Plan 3 was an internal startup within Schibsted)
* | serve as the tech lead for one of our internal software platforms

Why?

+ Why did we migrate from virtualised servers to Heroku?

Servers

We saw no need

+ Heroku seemed to be the easiest and most mature PaaS platform
+ Our codebase was already split up into separate components (but with weird interdependencies)

Architecture

12 factor compliance

The 12 factor methodology (12factor.net) on how to build services is derived from Heroku
A system built in accordance with 12 factor has high portability
Using Heroku mostly guarantees compliance with 12 factor (without thinking about i)
Migrating to Heroku forced us to clean up our code base

DevOps

No ops/infra team

+ The team does all ops and infra work
+ Everyone participates in on-call rotation

The system | is made up of around 25 individual services (7 staging & 1 prod = 50 apps)
 This is a simplified (and anonymised) solution diagram

Each black box is a service running on Heroku

Coloured boxes represent bounded contexts (domain driven design)

+ This is developed and operated by a team of 20 spread across Oslo, Krakéw & Stockholm

Our history

Glesys => UpCloud => Heroku

Initially we ran everything on virtualised servers which we managed ourselves
* In two years we’ve been through three hosting environments for production

Since November 2013

+ First experiments in November 2013
+ Then gradual migration and refactoring on a per service basis
+ Finally terminated the old servers September 2014 after finally pushing through and migrating the most intertwined service (and refactoring it substantially)

Red

Refactor

Github for source code
Bronson.io code reviews our pull requests (and comments inline on Github)
Travis for continuous integration
Every successful build on master is deployed by Travis to the staging app on Heroku

Green

Red

Refactor

Github for source code
Bronson.io code reviews our pull requests (and comments inline on Github)
Travis for continuous integration
Every successful build on master is deployed by Travis to the staging app on Heroku

Green

>
Code push

Red

Refactor Green

Bronson.io
Code review, build
& unit tests

Github for source code
+ Bronson.io code reviews our pull requests (and comments inline on Github)
+ Travis for continuous integration
+ Every successful build on master is deployed by Travis to the staging app on Heroku

Red

Refactor

Github for source code
Bronson.io code reviews our pull requests (and comments inline on Github)
Travis for continuous integration
Every successful build on master is deployed by Travis to the staging app on Heroku

Green

*

(\ v‘v)
Bronson.io

Code review, build
& unit tests

Red

Refactor Green

\ VA‘
Merge to master Bronson.io

Build & unit tests

\V“"

-

Github for source code

+ Bronson.io code reviews our pull requests (and comments inline on Github)

+ Travis for continuous integration

+ Every successful build on master is deployed by Travis to the staging app on Heroku

Red

Refactor Green

o
Stage deploy \'A" L

Bronson.io

Build & unit tests

Github for source code

+ Bronson.io code reviews our pull requests (and comments inline on Github)

+ Travis for continuous integration

+ Every successful build on master is deployed by Travis to the staging app on Heroku

Red

Refactor Green

‘
|““

Stage deploy

Github for source code
Bronson.io code reviews our pull requests (and comments inline on Github)
Travis for continuous integration
Every successful build on master is deployed by Travis to the staging app on Heroku

=8
[V_“ l’L"

Bronson.io

Red

Refactor
Production deploy

Github for source code
Bronson.io code reviews our pull requests (and comments inline on Github)
Travis for continuous integration
Every successful build on master is deployed by Travis to the staging app on Heroku

Green

*

Bronson.io

Red

Refactor

Github for source code
Bronson.io code reviews our pull requests (and comments inline on Github)
Travis for continuous integration
Every successful build on master is deployed by Travis to the staging app on Heroku

Green

*

Bronson.io

Learnings

Organizations

Organisation == Environment

This allows us to separate Heroku organisation admins between environments
+ Every service has 2 Heroku applications, (7 in stage org, 1 in prod org)
+ Organizations also solves billing (allows individuals to experiment with paid add-ons etc)

Preboot

Zero downtime deploy

+ Use at least 2 web dynos combined with Heroku Preboot to get zero downtime deployments

Add-ons

per-app per-env control

Might be more expensive than central storage etc
Storage and tooling isolation and freedom
Self administration
Per app per environment scaling (and thus pricing per app per org)
Performance testing shows cost impact immediately

Delegate

Access & responsibility

Heroku fits perfectly with our autonomous and decentralised organisation (enforce 2FA)
Everyone can create new apps, tweak existing ones
Allows rapid prototyping and experimentation (in a production like setting)
Proof of concepts are trivial to “promote” to production (+7 app & tweak add-ons) or toss (delete app)

Pipelines

Don't push, promote

+ Use the Heroku pipeline feature

+ We never push code to production, instead it’s always promoted from staging

+ This forces us to have externalised all environment specific configuration from the app itself
(as per the 12 factor manifesto)

Auto-deploy

At least to staging

* You can always circumvent this with manual push’es (branch deployment)

Transparency

Audit trail & chat log

Heroku provides audit trail (deploys and configuration changes)
* Heroku provides basic runtime metrics
+ Simple integration with chat for visibility into deploys (both staging & prod)

Challenges

Service discovery

We use DNS

+ We have one domain for stage and one for production
+ Services are named the same in both domains (simple and self-explanatory)

Auto-scaling

API vs add-ons

+ The hard part is deciding on what criteria/metric to scale
+ We don’t currently use any auto-scaling

Provisioning

terraform.io

* Currently we do this manually and with shell scripts (Heroku command client)
+ Terraform would allow automatic provisioning across Heroku & other services (AWS Route 53)

SSL certificates

manual vs add-ons

Not fun manually managing and deploying wild card certificates across 50 services
We’re evaluating an add-on (Expedited SSL)
Pros: Simple provisioning & automatic renewal
Cons: Much more expensive than buying 1 wild card cert and reusing that

Questions?

marten@planas.se

ldea:

PaaS as self-service dev env?

+ | have this idea that most organisations could use a PaaS such as Heroku as their development environment as it would give...
+ ...developers free reign to a self-service environment (fosters experimentation)
+ ...cost/budget transparency (fosters responsibility)
+ ...enforces good solution design and portability (using carrot rather than stick)

