
as a production platform

Basic familiarity with Heroku is assumed.



Howdy!
I’m Mårten Gustafson

I’m Mårten



• My speaker bio says I work at Plan 3, but we’re actually a part of Schibsted

• (Plan 3 was an internal startup within Schibsted)

• I serve as the tech lead for one of our internal software platforms



Why?

• Why did we migrate from virtualised servers to Heroku?



Servers
We saw no need

• Heroku seemed to be the easiest and most mature PaaS platform

• Our codebase was already split up into separate components (but with weird interdependencies)



Architecture
12 factor compliance

• The 12 factor methodology (12factor.net) on how to build services is derived from Heroku

• A system built in accordance with 12 factor has high portability

• Using Heroku mostly guarantees compliance with 12 factor (without thinking about it)

• Migrating to Heroku forced us to clean up our code base



DevOps
No ops/infra team

• The team does all ops and infra work

• Everyone participates in on-call rotation



Our setup



• The system I is made up of around 25 individual services (1 staging & 1 prod = 50 apps)

• This is a simplified (and anonymised) solution diagram

• Each black box is a service running on Heroku

• Coloured boxes represent bounded contexts (domain driven design)

• This is developed and operated by a team of 20 spread across Oslo, Kraków & Stockholm



Our history
Glesys => UpCloud => Heroku

• Initially we ran everything on virtualised servers which we managed ourselves

• In two years we’ve been through three hosting environments for production



Since November 2013

• First experiments in November 2013

• Then gradual migration and refactoring on a per service basis

• Finally terminated the old servers September 2014 after finally pushing through and migrating the most intertwined service (and refactoring it substantially)



Red

GreenRefactor

• Github for source code

• Bronson.io code reviews our pull requests (and comments inline on Github)

• Travis for continuous integration

• Every successful build on master is deployed by Travis to the staging app on Heroku



Red

GreenRefactor
Code push

• Github for source code

• Bronson.io code reviews our pull requests (and comments inline on Github)

• Travis for continuous integration

• Every successful build on master is deployed by Travis to the staging app on Heroku



Bronson.io

Red

GreenRefactor

Open PR

Code review, build 
& unit tests

• Github for source code

• Bronson.io code reviews our pull requests (and comments inline on Github)

• Travis for continuous integration

• Every successful build on master is deployed by Travis to the staging app on Heroku



Bronson.io

Red

GreenRefactor

Code review, build 
& unit tests

• Github for source code

• Bronson.io code reviews our pull requests (and comments inline on Github)

• Travis for continuous integration

• Every successful build on master is deployed by Travis to the staging app on Heroku



Bronson.io

Red

GreenRefactor

Merge to master

Build & unit tests

• Github for source code

• Bronson.io code reviews our pull requests (and comments inline on Github)

• Travis for continuous integration

• Every successful build on master is deployed by Travis to the staging app on Heroku



Bronson.io

Red

GreenRefactor

Build & unit tests

Stage deploy

• Github for source code

• Bronson.io code reviews our pull requests (and comments inline on Github)

• Travis for continuous integration

• Every successful build on master is deployed by Travis to the staging app on Heroku



Bronson.io

Red

GreenRefactor

Stage deploy

• Github for source code

• Bronson.io code reviews our pull requests (and comments inline on Github)

• Travis for continuous integration

• Every successful build on master is deployed by Travis to the staging app on Heroku



Bronson.io

Red

GreenRefactor
Production deploy

• Github for source code

• Bronson.io code reviews our pull requests (and comments inline on Github)

• Travis for continuous integration

• Every successful build on master is deployed by Travis to the staging app on Heroku



Bronson.io

Red

GreenRefactor

• Github for source code

• Bronson.io code reviews our pull requests (and comments inline on Github)

• Travis for continuous integration

• Every successful build on master is deployed by Travis to the staging app on Heroku



Learnings



Organizations
Organisation == Environment

• This allows us to separate Heroku organisation admins between environments

• Every service has 2 Heroku applications, (1 in stage org, 1 in prod org) 

• Organizations also solves billing (allows individuals to experiment with paid add-ons etc)



Preboot
Zero downtime deploy

• Use at least 2 web dynos combined with Heroku Preboot to get zero downtime deployments



Add-ons
per-app per-env control

• Might be more expensive than central storage etc

• Storage and tooling isolation and freedom

• Self administration

• Per app per environment scaling (and thus pricing per app per org)

• Performance testing shows cost impact immediately



Delegate
Access & responsibility

• Heroku fits perfectly with our autonomous and decentralised organisation (enforce 2FA)

• Everyone can create new apps, tweak existing ones

• Allows rapid prototyping and experimentation (in a production like setting)

• Proof of concepts are trivial to “promote” to production (+1 app & tweak add-ons) or toss (delete app)



Pipelines
Don’t push, promote

• Use the Heroku pipeline feature

• We never push code to production, instead it’s always promoted from staging

• This forces us to have externalised all environment specific configuration from the app itself 


	 (as per the 12 factor manifesto)



Auto-deploy
At least to staging

• You can always circumvent this with manual push’es (branch deployment)



Transparency
Audit trail & chat log

• Heroku provides audit trail (deploys and configuration changes)

• Heroku provides basic runtime metrics

• Simple integration with chat for visibility into deploys (both staging & prod)



Challenges



Service discovery
We use DNS

• We have one domain for stage and one for production

• Services are named the same in both domains (simple and self-explanatory)



Auto-scaling
API vs add-ons

• The hard part is deciding on what criteria/metric to scale

• We don’t currently use any auto-scaling



Provisioning
terraform.io

• Currently we do this manually and with shell scripts (Heroku command client)

• Terraform would allow automatic provisioning across Heroku & other services (AWS Route 53)



SSL certificates
manual vs add-ons

• Not fun manually managing and deploying wild card certificates across 50 services

• We’re evaluating an add-on (Expedited SSL)

• Pros: Simple provisioning & automatic renewal

• Cons: Much more expensive than buying 1 wild card cert and reusing that



Questions?
marten@plan3.se

• Thanks, questions?



Idea:
PaaS as self-service dev env?

• I have this idea that most organisations could use a PaaS such as Heroku as their development environment as it would give…

• …developers free reign to a self-service environment (fosters experimentation)

• …cost/budget transparency (fosters responsibility)

• …enforces good solution design and portability (using carrot rather than stick)


